Interfacial microstructure and strength of lead-free Sn-Zn-RE BGA solder bumps

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

20 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)252-258
Journal / PublicationIEEE Transactions on Advanced Packaging
Volume28
Issue number2
Publication statusPublished - May 2005

Abstract

Rare earth (RE) elements, primarily La and Ce, were doped in Sn-Zn solder to improve its properties such as wettability. The interfacial microstructure evolution and shear strength of the Sn-9Zn and Sn-9Zn-0.5RE (in wt%) solder bumps on Au/Ni/Cu under bump metallization (UBM) in a ball grid array (BGA) were investigated after thermal aging at 150 °C for up to 1000 h. In the as-reflowed Sn-9Zn solder bump, AuSn4 intermetallic compounds (IMCs) and Au-Zn circular IMCs formed close to the solder/UBM interface, together with the formation of a Ni-Zn-Sn ternary IMC layer of about 1 μm in thickness. In contrast, in the as-reflowed Sn-9Zn-0.5RE solder bump, a spalled layer of Au-Zn was formed above the Ni layer. Sn-Ce-La and Sn-Zn-Ce-La phases were found near the interface at positions near the surface of the solder ball. Upon thermal aging at 150 °C, the concentration of Zn in the Ni-Zn-Sn ternary layer of Sn-9Zn increased with aging time. For Sn-9Zn-0.5RE, the Au-Zn layer began to dissolve after 500 h of thermal aging. The shear strength of the Sn-9Zn ball was decreased after the addition of RE elements, although it was still higher than that of the Sn-37Pb and Sn-36Pb-2Ag Pb-bearing solders. The fracture mode of the Sn-9Zn system was changed from ductile to partly brittle after adding the RE elements. This is mainly due to the presence of the brittle Au-Zn layer. 

Research Area(s)

  • Ball grid array (BGA), BGA shear strength, Interfacial microstructure evolution, Sn-Zn-RE solder ball