Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

64 Scopus Citations
View graph of relations

Author(s)

  • Kun Du
  • Lifu Zhang
  • Jiaxin Guo
  • Jing Mao
  • Chueh-Cheng Yang
  • Chia-Hsin Wang
  • Zhenpeng Hu
  • Tao Ling

Detail(s)

Original languageEnglish
Article number5448
Journal / PublicationNature Communications
Volume13
Online published16 Sept 2022
Publication statusPublished - 2022
Externally publishedYes

Link(s)

Abstract

Designing catalytic materials with enhanced stability and activity is crucial for sustainable electrochemical energy technologies. RuO2 is the most active material for oxygen evolution reaction (OER) in electrolysers aiming at producing ‘green’ hydrogen, however it encounters critical electrochemical oxidation and dissolution issues during reaction. It remains a grand challenge to achieve stable and active RuO2 electrocatalyst as the current strategies usually enhance one of the two properties at the expense of the other. Here, we report breaking the stability and activity limits of RuO2 in neutral and alkaline environments by constructing a RuO2/CoOx interface. We demonstrate that RuO2 can be greatly stabilized on the CoOx substrate to exceed the Pourbaix stability limit of bulk RuO2. This is realized by the preferential oxidation of CoOx during OER and the electron gain of RuO2 through the interface. Besides, a highly active Ru/Co dual-atom site can be generated around the RuO2/CoOx interface to synergistically adsorb the oxygen intermediates, leading to a favourable reaction path. The as-designed RuO2/CoOx catalyst provides an avenue to achieve stable and active materials for sustainable electrochemical energy technologies. © 2022, The Author(s).

Research Area(s)

Citation Format(s)

Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. / Du, Kun; Zhang, Lifu; Shan, Jieqiong et al.
In: Nature Communications, Vol. 13, 5448, 2022.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available