In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Fangyuan Zheng
  • Qingming Deng
  • Lok Wing Wong
  • Yuan Cai
  • Ning Wang
  • Shu Ping Lau
  • Manish Chhowalla
  • Ju Li
  • Jiong Zhao

Detail(s)

Original languageEnglish
Article number246102
Journal / PublicationPhysical Review Letters
Volume125
Issue number24
Online published9 Dec 2020
Publication statusPublished - 11 Dec 2020

Link(s)

Abstract

The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS2) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS2 is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.

Research Area(s)

Citation Format(s)

In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale. / Huang, Lingli; Zheng, Fangyuan; Deng, Qingming; Thi, Quoc Huy; Wong, Lok Wing; Cai, Yuan; Wang, Ning; Lee, Chun-Sing; Lau, Shu Ping; Chhowalla, Manish; Li, Ju; Ly, Thuc Hue; Zhao, Jiong.

In: Physical Review Letters, Vol. 125, No. 24, 246102, 11.12.2020.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

Download Statistics

No data available