In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers : Shape tuning and polarized emission
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1411-1416 |
Journal / Publication | Nano Research |
Volume | 12 |
Issue number | 6 |
Online published | 29 May 2019 |
Publication status | Published - Jun 2019 |
Link(s)
Abstract
We report an in-situ fabrication of halide perovskite (CH3NH3PbX3, CH3NH3 = methylammonium, MA, X= Cl, Br, I) nanocrystals in polyvinylalcohol (PVA) nanofibers (MAPbX3@PVA nanofibers) through electrospinning a perovskite precursor solution. With the content of the precursors increased, the resulting MAPbBr3 nanocrystals in PVA matrix changed the shape from ellipsoidal to pearl-like, and finely into rods-like. Optimized MAPbBr3@PVA nanofibers show strong polarized emission with the photoluminescence quantum yield of up to 72%. We reveal correlations between the shape of in-situ fabricated perovskite nanocrystals and the polarization degree of their emission by comparing experimental data from the single nanofiber measurements with theoretical calculations. Polarized emission of MAPbBr3@PVA nanofibers can be attributed to the dielectric confinement and quantum confinement effects. Moreover, nanofibers can be efficiently aligned by using parallel positioned conductor strips with an air gap as collector. A polarization ratio of 0.42 was achieved for the films of well-aligned MAPbBr3@PVA nanofibers with a macroscale size of 0.5 cm x 2 cm, which allows potential applications in displays, lasers, waveguides, etc.
Research Area(s)
- anisotropy, electrospinning, lead halide perovskite, nanofibers, polarized emission
Citation Format(s)
In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. / Meng, Linghai; Yang, Changgang; Meng, Jingjia et al.
In: Nano Research, Vol. 12, No. 6, 06.2019, p. 1411-1416.
In: Nano Research, Vol. 12, No. 6, 06.2019, p. 1411-1416.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review