Inferring Attention Shifts for Salient Instance Ranking
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 964–986 |
Number of pages | 23 |
Journal / Publication | International Journal of Computer Vision |
Volume | 132 |
Issue number | 3 |
Online published | 18 Oct 2023 |
Publication status | Published - Mar 2024 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85174387337&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(e80cbf06-1145-4c74-89e4-c9174d2a8a67).html |
Abstract
The human visual system has limited capacity in simultaneously processing multiple visual inputs. Consequently, humans rely on shifting their attention from one location to another. When viewing an image of complex scenes, psychology studies and behavioural observations show that humans prioritise and sequentially shift attention among multiple visual stimuli. In this paper, we propose to predict the saliency rank of multiple objects by inferring human attention shift. We first construct a new large-scale salient object ranking dataset, with the saliency rank of objects defined by the order that an observer attends to these objects via attention shift. We then propose a new deep learning-based model to leverage both bottom-up and top-down attention mechanisms for saliency rank prediction. Our model includes three novel modules: Spatial Mask Module (SMM), Selective Attention Module (SAM) and Salient Instance Edge Module (SIEM). SMM integrates bottom-up and semantic object properties to enhance contextual object features, from which SAM learns the dependencies between object features and image features for saliency reasoning. SIEM is designed to improve segmentation of salient objects, which helps further improve their rank predictions. Experimental results show that our proposed network achieves state-of-the-art performances on the salient object ranking task across multiple datasets. Code and data are available at https://github.com/SirisAvishek/Attention_Shift_Ranks. © 2023, The Author(s).
Research Area(s)
- Attention shift, Saliency, Saliency ranking, Salient object detection
Citation Format(s)
Inferring Attention Shifts for Salient Instance Ranking. / Siris, Avishek; Jiao, Jianbo; Tam, Gary K.L. et al.
In: International Journal of Computer Vision, Vol. 132, No. 3, 03.2024, p. 964–986.
In: International Journal of Computer Vision, Vol. 132, No. 3, 03.2024, p. 964–986.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available