Indoor Exposure to Ambient Particles and Its Estimation Using Fixed Site Monitors

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

11 Scopus Citations
View graph of relations

Author(s)

  • Wenwei Che
  • H. Christopher Frey
  • Zhiyuan Li
  • Xiangqian Lao
  • Alexis K.H. Lau

Detail(s)

Original languageEnglish
Pages (from-to)808-819
Number of pages12
Journal / PublicationEnvironmental Science and Technology
Volume53
Issue number2
Online published6 Nov 2018
Publication statusPublished - 15 Jan 2019
Externally publishedYes

Abstract

Ambient PM2.5 concentrations measured at fixed site monitors (FSM) are often biased with respect to exposure concentrations because of spatial variability and infiltration. Based on comparison of ambient concentrations from 14 FSMs and of exposure concentrations measured indoors and outdoors at two schools in Hong Kong for winter and summer seasons, the magnitude and sources of exposure error based on using FSMs as a surrogate for exposure are quantified. An approach for bias correcting surrogate exposure estimates from FSMs is demonstrated. The approach is based on a proximity factor (PF) that accounts for differences in spatial locations, proximity to emissions and deviation from dominant wind direction, and an infiltration factor (IF) that varies by season. The combination of the PF and IF reduce bias in mean school exposure estimates from ±90% to ±20%. Bias in exposure estimates from using FSMs as surrogates tend to be smaller for which the exposure site and FSM are aligned with wind direction, have similar sampling height, and are in close proximity. The methodology demonstrated to assess concordance between FSMs and exposure measurement sites can be applied more broadly to help reduce exposure error, which may help to interpret seasonal variations in health estimates.

© 2018 American Chemical Society.

Bibliographic Note

Publisher Copyright: © 2018 American Chemical Society.

Citation Format(s)

Indoor Exposure to Ambient Particles and Its Estimation Using Fixed Site Monitors. / Che, Wenwei; Frey, H. Christopher; Li, Zhiyuan et al.
In: Environmental Science and Technology, Vol. 53, No. 2, 15.01.2019, p. 808-819.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review