Incentives for Shared Services: Multiserver Queueing Systems with Priorities

Hanlin Liu, Yimin Yu*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

3 Citations (Scopus)

Abstract

Problem definition: We study shared service whereby multiple independent service providers collaborate by pooling their resources into a shared service center (SSC). The SSC deploys an optimal priority scheduling policy for their customers collectively by accounting for their individual waiting costs and service-level requirements. We model the SSC as a multiclass M/M/c queueing system subject to service-level constraints. Academic/practical relevance: Shared services are increasingly popular among firms for saving operational costs and improving service quality. One key issue in fostering collaboration is the allocation of costs among different firms. Methodology: To incentivize collaboration, we investigate cost allocation rules for the SSC by applying concepts from cooperative game theory. Results: To empower our analysis, we show that a cooperative game with polymatroid optimization can be analyzed via simple auxiliary games. By exploiting the polymatroidal structures of the multiclass queueing systems, we show when the games possess a core allocation. We explore the extent to which our results remain valid for some general cases. Managerial implications: We provide operational insights and guidelines on how to allocate costs for the SSC under the multiserver queueing context with priorities.
Original languageEnglish
Pages (from-to)1751–1759
Number of pages9
JournalManufacturing & Service Operations Management
Volume24
Issue number3
Online published9 Dec 2021
DOIs
Publication statusPublished - May 2022

Research Keywords

  • resource pooling
  • shared service
  • multiclass queueing systems
  • priority rules
  • polymatroid
  • cooperative game theory

Fingerprint

Dive into the research topics of 'Incentives for Shared Services: Multiserver Queueing Systems with Priorities'. Together they form a unique fingerprint.
  • TBRS: Safety, Reliability, and Disruption Management of High Speed Rail and Metro Systems

    XIE, M. (Principal Investigator / Project Coordinator), BENSOUSSAN, A. (Co-Principal Investigator), LO, S. M. (Co-Principal Investigator), SHOU, B. (Co-Principal Investigator), SINGPURWALLA, N. D. (Co-Principal Investigator), TSE, W. T. P. (Co-Principal Investigator), TSUI, K. L. (Co-Principal Investigator), YU, Y. (Co-Principal Investigator), YUEN, K. K. R. (Co-Principal Investigator), CHAN, A. B. (Co-Investigator), CHAN, N.-H. (Co-Investigator), CHIN, K. S. (Co-Investigator), CHOW, H. A. (Co-Investigator), Chow, W. K. (Co-Investigator), EDESESS, M. (Co-Investigator), GOLDSMAN, D. M. (Co-Investigator), Huang, J. (Co-Investigator), LEE, W. M. (Co-Investigator), LI, L. (Co-Investigator), LI, C. L. (Co-Investigator), LING, M. H. A. (Co-Investigator), LIU, S. (Co-Investigator), MURAKAMI, J. (Co-Investigator), NG, S. Y. S. (Co-Investigator), NI, M. C. (Co-Investigator), TAN, M.H.-Y. (Co-Investigator), Wang, W. (Co-Investigator), Wang, J. (Co-Investigator), WONG, C. K. (Co-Investigator), WONG, S. Y. Z. (Co-Investigator), WONG, S. C. (Co-Investigator), Xu, Z. (Co-Investigator), ZHANG, Z. (Co-Investigator), Zhang, D. (Co-Investigator), ZHAO, J. L. (Co-Investigator) & Zhou, Q. (Co-Investigator)

    1/01/1631/12/21

    Project: Research

Cite this