TY - JOUR
T1 - In vitro experiment to elucidate the mechanism of the 'soft shell technique' for preventing subretinal migration of perfluoro-octane
AU - Chan, Yau Kei
AU - Lu, Yongjie
AU - Czanner, Gabriela
AU - Wu, Jing
AU - Cheng, Ho Ching
AU - Hussain, Rumana
AU - Sakamoto, Taiji
AU - Shum, Ho Cheung
AU - Wong, David
N1 - Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].
PY - 2017
Y1 - 2017
N2 - Aim Perfluorocarbon liquid (PFCL) can migrate into subretinal space in detached and stiffened retina with open holes during vitreoretinal surgery. An innovative 'soft shell' technique was introduced to reduce the complication using hyaluronate (HA) to 'cover' the retinal hole. This study aims to study the effectiveness of this technique in vitro. Methods Ex vivo porcine retina was mounted on a transwell insert. Beneath the retina was an aqueous solution. Two retinal holes were made using needle punctures. One of the two retinal holes was covered with HA. Perfluoro-n-octane (PFO) was added above the retina incrementally using a syringe pump. The height of PFO required to cause the migration of PFO through the retinal holes was measured. The 'pendant drop' method was carried out to measure the interfacial tensions between the PFO and aqueous, and between PFO and four different concentrations of HA solution. Results A statistically higher PFO level was required to cause the migration of PFO through the retinal hole with HA coating than without HA coating (Tobit regression with p<0.05). The use of HA was associated with 2.39-fold increase in hydrostatic pressure before the collapse of the PFO interface at the retinal holes. The interfacial tension between PFO and HA solution with concentrations of 0.05%, 0.25%, 0.5% and 1% were 54.2±0.6, 55.3±0.6, 59.5±1.5 and 68.3±1.3 mN/m, respectively (mean±SD). The interfacial tension between PFO and aqueous with 1% HA coating (68.3±1.3 mN/ m) was significantly higher than that without (37.4 ±3.4 mN/m) (p<0.05). Conclusions The interfacial tension between HA and PFO is higher than that between aqueous and PFO. This is a plausible physical explanation of how the 'soft shell' technique might work to prevent subretinal migration of PFCL. © 2016 Cambridge University Press. All rights reserved.
AB - Aim Perfluorocarbon liquid (PFCL) can migrate into subretinal space in detached and stiffened retina with open holes during vitreoretinal surgery. An innovative 'soft shell' technique was introduced to reduce the complication using hyaluronate (HA) to 'cover' the retinal hole. This study aims to study the effectiveness of this technique in vitro. Methods Ex vivo porcine retina was mounted on a transwell insert. Beneath the retina was an aqueous solution. Two retinal holes were made using needle punctures. One of the two retinal holes was covered with HA. Perfluoro-n-octane (PFO) was added above the retina incrementally using a syringe pump. The height of PFO required to cause the migration of PFO through the retinal holes was measured. The 'pendant drop' method was carried out to measure the interfacial tensions between the PFO and aqueous, and between PFO and four different concentrations of HA solution. Results A statistically higher PFO level was required to cause the migration of PFO through the retinal hole with HA coating than without HA coating (Tobit regression with p<0.05). The use of HA was associated with 2.39-fold increase in hydrostatic pressure before the collapse of the PFO interface at the retinal holes. The interfacial tension between PFO and HA solution with concentrations of 0.05%, 0.25%, 0.5% and 1% were 54.2±0.6, 55.3±0.6, 59.5±1.5 and 68.3±1.3 mN/m, respectively (mean±SD). The interfacial tension between PFO and aqueous with 1% HA coating (68.3±1.3 mN/ m) was significantly higher than that without (37.4 ±3.4 mN/m) (p<0.05). Conclusions The interfacial tension between HA and PFO is higher than that between aqueous and PFO. This is a plausible physical explanation of how the 'soft shell' technique might work to prevent subretinal migration of PFCL. © 2016 Cambridge University Press. All rights reserved.
UR - http://www.scopus.com/inward/record.url?scp=85009453052&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85009453052&origin=recordpage
U2 - 10.1136/bjophthalmol-2016-309856
DO - 10.1136/bjophthalmol-2016-309856
M3 - RGC 21 - Publication in refereed journal
C2 - 28057648
SN - 0007-1161
VL - 101
SP - 389
EP - 394
JO - British Journal of Ophthalmology
JF - British Journal of Ophthalmology
IS - 3
ER -