Abstract
Electrocatalytic performance can be enhanced by engineering a purposely designed nanoheterojunction and fine-tuning the interface electronic structure. Herein a new approach of developing atomic epitaxial in-growth in Co-Ni3N nanowires array is devised, where a nanoconfinement effect is reinforced at the interface. The Co-Ni3N heterostructure array is formed by thermal annealing NiCo2O4 precursor nanowires under an optimized condition, during which the nanowire morphology is retained. The epitaxial in-growth structure of Co-Ni3N at nanometer scale facilitates the electron transfer between the two different domains at the epitaxial interface, leading to a significant enhancement in catalytic activities for both hydrogen and oxygen evolution reactions (10 and 16 times higher in the respective turn-over frequency compared to Ni3N-alone nanorods). The interface transfer effect is verified by electronic binding energy shift and density functional theory (DFT) calculations. This nanoconfinement effect occurring during in situ atomic epitaxial in-growth of the two compatible materials shows an effective pathway toward high-performance electrocatalysis and energy storages. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Original language | English |
---|---|
Article number | 1705516 |
Journal | Advanced Materials |
Volume | 30 |
Issue number | 13 |
Online published | 13 Feb 2018 |
DOIs | |
Publication status | Published - 27 Mar 2018 |
Externally published | Yes |
Research Keywords
- epitaxial in-growth
- hydrogen evolution reaction
- metal nitride arrays
- nanoconfinement
- oxygen evolution reaction