Identifying Glyceraldehyde 3-Phosphate Dehydrogenase as a Cyclic Adenosine Diphosphoribose Binding Protein by Photoaffinity Protein-Ligand Labeling Approach
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 156-170 |
Journal / Publication | Journal of the American Chemical Society |
Volume | 139 |
Issue number | 1 |
Online published | 12 Dec 2016 |
Publication status | Published - 11 Jan 2017 |
Link(s)
Abstract
Cyclic adenosine diphosphoribose (cADPR), an endogenous nucleotide derived from nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ release from endoplasmic reticulum (ER) via ryanodine receptors (RyRs), yet the bridging protein(s) between cADPR and RyRs remain(s) unknown. Here we synthesized a novel photoaffinity labeling (PAL) cADPR agonist, PAL-cIDPRE, and subsequently applied it to purify its binding proteins in human Jurkat T cells. We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cADPR binding protein(s), characterized the binding affinity between cADPR and GAPDH in vitro by surface plasmon resonance (SPR) assay, and mapped cADPR's binding sites in GAPDH. We further demonstrated that cADPR induces the transient interaction between GAPDH and RyRs in vivo and that GAPDH knockdown abolished cADPR-induced Ca2+ release. However, GAPDH did not catalyze cADPR into any other known or novel compound(s). In summary, our data clearly indicate that GAPDH is the long-sought-after cADPR binding protein and is required for cADPR-mediated Ca2+ mobilization from ER via RyRs.
Research Area(s)
- Journal Article
Citation Format(s)
In: Journal of the American Chemical Society, Vol. 139, No. 1, 11.01.2017, p. 156-170.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review