Identifiability and Consistent Estimation for Gaussian Chain Graph Models

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Journal / PublicationJournal of the American Statistical Association
Online published14 Feb 2024
Publication statusOnline published - 14 Feb 2024

Abstract

The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in the literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this article, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data. Supplementary materials for this article are available online. © 2024 American Statistical Association.

Research Area(s)

  • Causal inference, Directed acyclic graph, Gaussian graphical model, Low-rank plus sparse decomposition, Tangent space