Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Title of host publicationInternational Conference on Nuclear Engineering, Proceedings, ICONE
PublisherAmerican Society of Mechanical Engineers (ASME)
Volume2A
ISBN (print)9780791845905
Publication statusPublished - 2014
Externally publishedYes

Publication series

Name
Volume2A

Conference

Title2014 22nd International Conference on Nuclear Engineering, ICONE 2014
PlaceCzech Republic
CityPrague
Period7 - 11 July 2014

Abstract

In the PWR core, the fuel assembly is firmly seated on the lower core plate during operation. However, if the hydraulic force exerted on the fuel assembly by coolant flow is too large and the fuel assembly is lifted-off from the lower core plate, the excessive vibration will cause fuel failure. Therefore, the hydraulic lift-off issue needs to be addressed when the advanced fuel assembly is developed. It has been shown that the advanced annular fuel design with internal cooling allows power uprating up to 50% while the peak temperature of the fuel can be reduced and the MDNBR can be maintained. However, if the coolant condition in the core is kept unchanged, increasing the core power by 50% requires the core flow rate also increase proportionally, which will give rise to the hydraulic lift-off, an important issue to be addressed. In this paper, taking the 17x17 solid fuel design as the reference, the hydraulic lift-off issue is investigated for proposed 12x12 and 13x13 annular fuel designs. Both the steady-state and start-up operating conditions are evaluated. It is found that the hydraulic lift-off indeed is an issue for annular fuel design which requires careful analysis. By comparison, the lift-off forces and holddown forces required for the externally and internally cooled annular fuels (13x13 and 12x12 arrays) are several times larger than that of the referenced solid fuel (17x17 array). Therefore, the hold-down mechanism for annular fuel needs to be carefully designed.

Citation Format(s)

Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors. / Zhao, Jiyun; Gui, Jingkang.
International Conference on Nuclear Engineering, Proceedings, ICONE. Vol. 2A American Society of Mechanical Engineers (ASME), 2014.

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review