Hybrid Machine Learning Approach for Evapotranspiration Estimation of Fruit Tree in Agricultural Cyber-Physical Systems

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

  • Xuping Wang
  • Yiping Jiang
  • Zilai Sun
  • Yuhu Liang
  • Xiangpei Hu
  • Hao Li
  • Yan Shi
  • Junhu Ruan

Related Research Unit(s)

Detail(s)

Original languageEnglish
Journal / PublicationIEEE Transactions on Cybernetics
Online published4 May 2022
Publication statusOnline published - 4 May 2022

Abstract

The flourish of the Internet of Things (IoT) and data-driven techniques provide new ideas for enhancing agricultural production, where evapotranspiration estimation is a crucial issue in crop irrigation systems. However, tremendous and unsynchronized data from agricultural cyber-physical systems bring large computational costs as well as complicate performing conventional machine learning methods. To precisely estimate evapotranspiration with acceptable computational costs under the background of IoT, we combine time granulation computing techniques and gradient boosting decision tree (GBDT) with Bayesian optimization (BO) to propose a hybrid machine learning approach. In the combination, a fuzzy granulation method and a time calibration technique are introduced to break voluminous and unsynchronized data into small-scale and synchronized granules with high representativeness. Subsequently, GBDT is implemented to predict evapotranspiration, and BO is utilized to find the optimal hyperparameter values from the reduced granules. IoT data from Xi'an Fruit Technology Promotion Center in Shaanxi Province, China, verify that the proposed granular-GBDT-BO is effective for cherry tree evapotranspiration estimation with reduced computational time, and acceptable and robust predictive accuracy. Consequently, the precise estimation of crop evapotranspiration could provide operational guidance for plant irrigation, plant conservations, and pest control in the agricultural greenhouse.

Research Area(s)

  • Agricultural cyber-physical systems, agricultural greenhouse, Agriculture, Crops, Estimation, fuzzy system, Green products, machine learning, Mathematical models, Production, Temperature sensors