Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

70 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number115875
Journal / PublicationApplied Energy
Volume280
Online published3 Nov 2020
Publication statusPublished - 15 Dec 2020
Externally publishedYes

Abstract

With the ever-increased penetration of solar energy in the power grid, solar photovoltaic forecasting has become an indispensable aspect in maintaining power system stability and economic operation. At the operating stage, the forecasting accuracy of renewables has a direct influence on energy scheduling and dispatching. In this paper, we propose a series of novel approaches based on deep whole-sky-image learning architectures for very short-term solar photovoltaic generation forecasting, of which the lookahead windows concern the scales from 4 to 20 min. In particular, multiple deep learning models with the integration of both static sky image units and dynamic sky image stream are explicitly investigated. Extensive numerical studies on various models are carried out, through which the experimental results show that the proposed hybrid static image forecaster provides superior performance as compared to the benchmarking methods (i.e. the ones without sky images), with up to 8.3% improvement in general, and up to 32.8% improvement in the cases of ramp events. In addition, case studies at multiple time scales reveal that sky-image-based models can be more robust to the ramp events in solar photovoltaic generation. © 2020 Published by Elsevier Ltd.

Research Area(s)

  • Convolutional LSTM, Deep learning, Solar generation forecasting, Whole Sky image

Citation Format(s)

Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting. / Kong, Weicong; Jia, Youwei; Dong, Zhao Yang et al.
In: Applied Energy, Vol. 280, 115875, 15.12.2020.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review