Hu-Fu : Efficient and Secure Spatial Queries over Data Federation

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

30 Scopus Citations
View graph of relations

Author(s)

  • Yongxin Tong
  • Xuchen Pan
  • Yuxiang Zeng
  • Yexuan Shi
  • Chunbo Xue
  • Xiaofei Zhang
  • Lei Chen
  • Yi Xu
  • Ke Xu
  • Weifeng Lv

Detail(s)

Original languageEnglish
Pages (from-to)1159-1172
Journal / PublicationContemporary Mathematics
Volume15
Issue number6
Online published1 Feb 2022
Publication statusPublished - Feb 2022
Externally publishedYes

Conference

Title48th International Conference on Very Large Data Bases (VLDB 2022)
LocationThe International Convention Centre Sydney (in-person & Online)
PlaceAustralia
CitySydney
Period5 - 9 September 2022

Abstract

Data isolation has become an obstacle to scale up query processing over big data, since sharing raw data among data owners is often prohibitive due to security concerns. A promising solution is to perform secure queries over a federation of multiple data owners leveraging secure multi-party computation (SMC) techniques, as evidenced by recent federation work over relational data. However, existing solutions are highly inefficient on spatial queries due to excessive secure distance operations for query processing and their usage of general-purpose SMC libraries for secure operation implementation. In this paper, we propose Hu-Fu, the first system for efficient and secure spatial query processing on a data federation. The idea is to decompose the secure processing of a spatial query into as many plaintext operations and as few secure operations as possible, where fewer secure operators are involved and all secure operators are implemented dedicatedly. As a working system, Hu-Fu supports not only query input in native SQL, but also heterogeneous spatial databases (e.g., PostGIS, Simba, GeoMesa, and SpatialHadoop) at the backend. Extensive experiments show that Hu-Fu usually outperforms the state-of-the-arts in running time and communication cost while guaranteeing security. © 2022, American Mathematical Society. All rights reserved.

Citation Format(s)

Hu-Fu: Efficient and Secure Spatial Queries over Data Federation. / Tong, Yongxin; Pan, Xuchen; Zeng, Yuxiang et al.
In: Contemporary Mathematics, Vol. 15, No. 6, 02.2022, p. 1159-1172.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review