High-Order Mean-Field Approximations for Adaptive Susceptible-Infected-Susceptible Model in Finite-Size Networks

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number6637761
Journal / PublicationComplexity
Volume2021
Online published23 Feb 2021
Publication statusPublished - 2021

Link(s)

Abstract

Exact solutions of epidemic models are critical for identifying the severity and mitigation possibility for epidemics. However, solving complex models can be difficult when interfering conditions from the real-world are incorporated into the models. In this paper, we focus on the generally unsolvable adaptive susceptible-infected-susceptible (ASIS) epidemic model, a typical example of a class of epidemic models that characterize the complex interplays between the virus spread and network structural evolution. We propose two methods based on mean-field approximation, i.e., the first-order mean-field approximation (FOMFA) and higher-order mean-field approximation (HOMFA), to derive the exact solutions to ASIS models. Both methods demonstrate the capability of accurately approximating the metastable-state statistics of the model, such as the infection fraction and network density, with low computational cost. These methods are potentially powerful tools in understanding, mitigating, and controlling disease outbreaks and infodemics.

Download Statistics

No data available