Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed-Cation Surface Modulation
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 2305946 |
Journal / Publication | Advanced Materials |
Volume | 35 |
Issue number | 49 |
Online published | 7 Dec 2023 |
Publication status | Published - 7 Dec 2023 |
Link(s)
Abstract
Perovskite/organic tandem solar cells (POTSCs) are gaining attention due to their easy fabrication, potential to surpass the S-Q limit, and superior flexibility. However, the low power conversion efficiencies (PCEs) of wide bandgap (Eg) perovskite solar cells (PVSCs) have hindered their development. This work presents a novel and effective mixed-cation passivation strategy (CE) to passivate various types of traps in wide-Eg perovskite. The complementary effect of 4-trifluoro phenethylammonium (CF3-PEA+, denoted as CA+) and ethylenediammonium (EDA2+, denoted as EA2+) reduces both electron/hole defect densities and non-radiative recombination rate, resulting in a record open-circuit voltage (Voc) of wide-Eg PVSCs (1.35 V) and a high fill factor (FF) of 83.29%. These improvements lead to a record PCE of 24.47% when applied to fabricated POTSCs, the highest PCE to date. Furthermore, unencapsulated POTSCs exhibit excellent photo and thermal stability, retaining over 90% of their initial PCE after maximum power point (MPP) tracking or exposure to 60 °C for 500 h. These findings imply that the synergic effect of surface passivators is a promising strategy to achieve high-efficiency and stable wide-Eg PVSCs and corresponding POTSCs. © 2023 Wiley-VCH GmbH.
Research Area(s)
- mixed cation, perovskite/organic tandem solar cells, surface modulation, synergic passivation, wide-bandgap perovskites
Citation Format(s)
Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed-Cation Surface Modulation. / Wang, Xue; Zhang, Dong; Liu, Baoze et al.
In: Advanced Materials, Vol. 35, No. 49, 2305946, 07.12.2023.
In: Advanced Materials, Vol. 35, No. 49, 2305946, 07.12.2023.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review