Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 7331-7338 |
Journal / Publication | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 8 |
Publication status | Published - 1 Mar 2017 |
Link(s)
Abstract
Organic materials containing arylamines have been widely used as hole-transporting materials as well as emitters in organic light-emitting devices (OLEDs). However, it has been pointed out that the C-N bonds in these arylamines can easily suffer from degradation in excited states, especially in deep-blue OLEDs. In this work, phenanthro[9,10-d]imidazole (PI) is proposed as a potential donor with higher stability than those of arylamines. Using PI as the donor, a donor-acceptor type deep-blue fluorophore 1-phenyl-2-(4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1′:4′,1″-terphenyl]-4-yl)-1H-phenanthro[9,10-d]imidazole (BITPI) is designed and synthesized. Results from UV-aging test on neat films of BITPI and other three arylamine compounds demonstrate that PI is indeed a more stable donor comparing to common arylamines. An OLED using BITPI as an emitter exhibits good device performances (EQE over 7%) with stable deep-blue emission (color index: (0.15, 0.13)) and longer operation lifetime than the similarly structured device using arylamine-based emitter. Single-organic layer device based on BITPI also shows superior performances, which are comparable to the best results from the arylamine-based donor-acceptor emitters, suggesting that PI is a stable donor with good hole transport/injection capability.
Research Area(s)
- deep-blue OLED, donor-acceptor emitter, high efficiency, high stability, phenanthro[9,10-d]imidazole
Citation Format(s)
Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. / Chen, Wen-Cheng; Yuan, Yi; Ni, Shao-Fei et al.
In: ACS Applied Materials and Interfaces, Vol. 9, No. 8, 01.03.2017, p. 7331-7338.Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review