High-dimensional Quantile Tensor Regression
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 250 |
Journal / Publication | Journal of Machine Learning Research |
Volume | 21 |
Publication status | Published - Oct 2020 |
Link(s)
Document Link | Links
|
---|---|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85098455237&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(964da75e-82fa-4caf-8ed5-6d5f2d5cb2ab).html |
Abstract
Quantile regression is an indispensable tool for statistical learning. Traditional quantile regression methods consider vector-valued covariates and estimate the corresponding coefficient vector. Many modern applications involve data with a tensor structure. In this paper, we propose a quantile regression model which takes tensors as covariates, and present an estimation approach based on Tucker decomposition. It effectively reduces the number of parameters, leading to efficient estimation and feasible computation. We also use a sparse Tucker decomposition, which is a popular approach in the literature, to further reduce the number of parameters when the dimension of the tensor is large. We propose an alternating update algorithm combined with alternating direction method of multipliers (ADMM). The asymptotic properties of the estimators are established under suitable conditions. The numerical performances are demonstrated via simulations and an application to a crowd density estimation problem.
Research Area(s)
- Multidimensional array, Quantile regression, Sparsity principle, Tensor regression, Tucker decomposition
Citation Format(s)
High-dimensional Quantile Tensor Regression. / Lu, Wenqi; Zhu, Zhongyi; Lian, Heng.
In: Journal of Machine Learning Research, Vol. 21, 250, 10.2020.
In: Journal of Machine Learning Research, Vol. 21, 250, 10.2020.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review