High-Dimensional Dynamic Covariance Matrices With Homogeneous Structure

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations


Related Research Unit(s)


Original languageEnglish
Pages (from-to)96–110
Number of pages15
Journal / PublicationJournal of Business & Economic Statistics
Issue number1
Online published28 Jul 2020
Publication statusPublished - 2022


High-dimensional covariance matrices appear in many disciplines. Much literature has devoted to the research in high-dimensional constant covariance matrices. However, constant covariance matrices are not sufficient in applications, for example, in portfolio allocation, dynamic covariance matrices would be more appropriate. As argued in this article, there are two difficulties in the introduction of dynamic structures into covariance matrices: (1) simply assuming each entry of a covariance matrix is a function of time to introduce the dynamic needed would not work; (2) there is a risk of having too many unknowns to estimate due to the high dimensionality. In this article, we propose a dynamic structure embedded with a homogeneous structure. We will demonstrate the proposed dynamic structure makes more sense in applications and avoids, in the meantime, too many unknown parameters/functions to estimate, due to the embedded homogeneous structure. An estimation procedure is also proposed to estimate the proposed high-dimensional dynamic covariance matrices, and asymptotic properties are established to justify the proposed estimation procedure. Intensive simulation studies show the proposed estimation procedure works very well when the sample size is finite. Finally, we apply the proposed high-dimensional dynamic covariance matrices to portfolio allocation. It is interesting to see the resulting portfolio yields much better returns than some commonly used ones.

Research Area(s)

  • B-spline, High-dimensional dynamic covariance matrices, Homogeneous structure, Portfolio allocation, Single index models