High energy storage efficiency and thermal stability of A-site-deficient and 110-textured BaTiO3–BiScO3 thin films
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 3168-3177 |
Journal / Publication | Journal of the American Ceramic Society |
Volume | 103 |
Issue number | 5 |
Online published | 8 Jan 2020 |
Publication status | Published - May 2020 |
Link(s)
Abstract
The development of thin film dielectrics having both high energy density and energy conversion efficiency, as well as good thermal stability, is necessary for practical application in high-temperature power electronics. In addition, there is a demand for the development of new Pb-free high-energy density dielectric materials due to environmental concerns. In this regard, thin films of weakly coupled relaxors based on solid solutions of BaTiO3–BiMeO3 have shown good promise, because they exhibit a remarkably large polarization over a wide temperature range. Nevertheless, the performance of Pb-free thin films has lagged behind that of their Pb-based counterparts in terms of thermal stability and energy conversion efficiency. Toward this end, most recent studies on BaTiO3–BiMeO3 systems have focused on the optimization of material composition, while relatively less attention has been paid to other aspects such as defect chemistry and crystallographic texture. In this study, we examine the effects of A-site vacancy and crystallographic texture on the energy storage performance of BaTiO3–BiScO3 thin films synthesized using pulsed laser deposition (PLD). It is shown that a high energy storage density (Wr) of ~28.8 J/cm3 and a high efficiency of η >90% are achieved through a combination of moderate A-site vacancy concentration and (110) crystallographic texture. Furthermore, Wr remains nearly temperature independent while a high efficiency of η >80% is maintained for temperatures up to 200°C, which constitutes one of the best performances for Pb-free ferroelectric films for high-temperature capacitor applications.
Research Area(s)
- ferroelectricity/ferroelectric materials, texture, thin films, X-ray methods
Citation Format(s)
High energy storage efficiency and thermal stability of A-site-deficient and 110-textured BaTiO3–BiScO3 thin films. / Abbas, Waseem; Ho, Derek; Pramanick, Abhijit.
In: Journal of the American Ceramic Society, Vol. 103, No. 5, 05.2020, p. 3168-3177.
In: Journal of the American Ceramic Society, Vol. 103, No. 5, 05.2020, p. 3168-3177.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review