TY - JOUR
T1 - Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage
AU - Ke, Xi
AU - Cheng, Yifeng
AU - Liu, Jun
AU - Liu, Liying
AU - Wang, Naiguang
AU - Liu, Jianping
AU - Zhi, Chunyi
AU - Shi, Zhicong
AU - Guo, Zaiping
PY - 2018/4/25
Y1 - 2018/4/25
N2 - Rechargeable lithium metal anodes (LMAs) with long cycling life have been regarded as the "Holy Grail" for high-energy-density lithium metal secondary batteries. The skeleton plays an important role in determining the performance of LMAs. Commercially available copper foam (CF) is not normally regarded as a suitable skeleton for stable lithium storage owing to its relatively inappropriate large pore size and relatively low specific surface area. Herein, for the first time, we revisit CF and address these issues by rationally designing a highly porous copper (HPC) architecture grown on CF substrates (HPC/CF) as a three-dimensional (3D) hierarchically bicontinuous porous skeleton through a novel approach combining the self-assembly of polystyrene microspheres, electrodeposition of copper, and a thermal annealing treatment. Compared to the CF skeleton, the HPC/CF skeleton exhibits a significantly improved Li plating/stripping behavior with high Coulombic efficiency (CE) and superior Li dendrite growth suppression. The 3D HPC/CF-based LMAs can run for 620 h without short-circuiting in a symmetric Li/Li@Cu cell at 0.5 mA cm-2, and the Li@Cu/LiFePO4 full cell exhibits a high reversible capacity of 115 mAh g-1 with a high CE of 99.7% at 2 C for 500 cycles. These results demonstrate the effectiveness of the design strategy of 3D hierarchically bicontinuous porous skeletons for developing stable and safe LMAs.
AB - Rechargeable lithium metal anodes (LMAs) with long cycling life have been regarded as the "Holy Grail" for high-energy-density lithium metal secondary batteries. The skeleton plays an important role in determining the performance of LMAs. Commercially available copper foam (CF) is not normally regarded as a suitable skeleton for stable lithium storage owing to its relatively inappropriate large pore size and relatively low specific surface area. Herein, for the first time, we revisit CF and address these issues by rationally designing a highly porous copper (HPC) architecture grown on CF substrates (HPC/CF) as a three-dimensional (3D) hierarchically bicontinuous porous skeleton through a novel approach combining the self-assembly of polystyrene microspheres, electrodeposition of copper, and a thermal annealing treatment. Compared to the CF skeleton, the HPC/CF skeleton exhibits a significantly improved Li plating/stripping behavior with high Coulombic efficiency (CE) and superior Li dendrite growth suppression. The 3D HPC/CF-based LMAs can run for 620 h without short-circuiting in a symmetric Li/Li@Cu cell at 0.5 mA cm-2, and the Li@Cu/LiFePO4 full cell exhibits a high reversible capacity of 115 mAh g-1 with a high CE of 99.7% at 2 C for 500 cycles. These results demonstrate the effectiveness of the design strategy of 3D hierarchically bicontinuous porous skeletons for developing stable and safe LMAs.
KW - 3D skeletons
KW - electrodeposition
KW - hierarchically bicontinuous
KW - lithium metal anodes
KW - polystyrene microspheres
UR - http://www.scopus.com/inward/record.url?scp=85045922949&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-85045922949&origin=recordpage
U2 - 10.1021/acsami.8b01978
DO - 10.1021/acsami.8b01978
M3 - RGC 21 - Publication in refereed journal
SN - 1944-8244
VL - 10
SP - 13552
EP - 13561
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 16
ER -