Hashing-Based Undersampling Ensemble for Imbalanced Pattern Classification Problems
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1269-1279 |
Journal / Publication | IEEE Transactions on Cybernetics |
Volume | 52 |
Issue number | 2 |
Online published | 29 Jun 2020 |
Publication status | Published - Feb 2022 |
Link(s)
Abstract
Undersampling is a popular method to solve imbalanced classification problems. However, sometimes it may remove too many majority samples which may lead to loss of informative samples. In this article, the hashing-based undersampling ensemble (HUE) is proposed to deal with this problem by constructing diversified training subspaces for undersampling. Samples in the majority class are divided into many subspaces by a hashing method. Each subspace corresponds to a training subset which consists of most of the samples from this subspace and a few samples from surrounding subspaces. These training subsets are used to train an ensemble of classification and regression tree classifiers with all minority class samples. The proposed method is tested on 25 UCI datasets against state-of-the-art methods. Experimental results show that the HUE outperforms other methods and yields good results on highly imbalanced datasets.
Research Area(s)
- Bagging, hashing, imbalanced classification problems, undersampling
Citation Format(s)
Hashing-Based Undersampling Ensemble for Imbalanced Pattern Classification Problems. / Ng, Wing W. Y.; Xu, Shichao; Zhang, Jianjun et al.
In: IEEE Transactions on Cybernetics, Vol. 52, No. 2, 02.2022, p. 1269-1279.
In: IEEE Transactions on Cybernetics, Vol. 52, No. 2, 02.2022, p. 1269-1279.
Research output: Journal Publications and Reviews (RGC: 21, 22, 62) › 21_Publication in refereed journal › peer-review