Harmonic Current Control of OW-PMSM for Low-Voltage Traction by Nonlinear Disturbance Rejection with Improved Modulation Scheme

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

View graph of relations

Related Research Unit(s)

Detail(s)

Original languageEnglish
Journal / PublicationIEEE Transactions on Vehicular Technology
Online published21 Oct 2022
Publication statusOnline published - 21 Oct 2022

Abstract

The open-winding permanent magnet synchronous motor (OW-PMSM) has been developed, mostly potential for low-voltage traction in electric vehicles. Yet, both the disturbance from vehicle system under driving and the motor with low-reactance (LR) feature expose the limits of traditional controllers that are prone to great current harmonics. Therefore, the current control for LR OW-PMSM becomes challenging. The main objective of this research is to provide a current harmonic control strategy for LR OW-PMSM by the nonlinear lumped disturbance observer (NLDO) combined with improved space vector modulation (SVM) scheme. The existence of nonlinear, unknown, unmodeled factors has been confirmed by current measurement and harmonic analysis in full operation range, and thus is considered in proposed controllers. The NLDO is designed for all the three axes under the dq0 frame. The SVM algorithm is adjusted to two switching patterns in order to get widened linear voltage modulation range. In addition, in the 3-D voltage space is the possible modulation area investigated. Ultimately, the target LR OW-PMSM has been designed, prototyped, and tested. The proposed NLDO, juxtaposed with ordinary PI and deadbeat controllers, reduces current harmonics on both the motor and inverter sides, possesses high robustness, and is practical for LR motors, according to experimental results.

Research Area(s)

  • Harmonic analysis, Low voltage, low-voltage traction, Mathematical models, Modulation, open winding, permanent magnet machine, Rotors, slotless, space vector modulation, Synchronous motors, Traction motors