Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

76 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)1130-1147
Journal / PublicationSensors
Volume12
Issue number2
Online published30 Jan 2012
Publication statusPublished - Feb 2012

Link(s)

Abstract

The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

Research Area(s)

  • Cascaded, Concordance correlation, Hand motion, Multi-channel, Surface electromyography

Citation Format(s)

Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor. / Tang, Xueyan; Liu, Yunhui; Lv, Congyi et al.
In: Sensors, Vol. 12, No. 2, 02.2012, p. 1130-1147.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

Download Statistics

No data available