H2O2 Treated La0.8Sr0.2CoO3-δ as an Efficient Catalyst for Oxygen Evolution Reaction

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

22 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)139-145
Journal / PublicationElectrochimica Acta
Volume244
Publication statusPublished - 1 Aug 2017
Externally publishedYes

Abstract

The development of non-precious metal-based oxygen evolution reaction (OER) electrocatalysts is one of the keys to lower the cost of various renewable energy technologies including fuel cells, water electrolyzers, and metal-air batteries. Perovskite oxides are among the best catalysts for OER in alkaline solutions. In the perovskite family, La0.8Sr0.2CoO3-δ (LSC) has been reported to have OER catalytic properties dependent on the characteristics of its surface, but where its activity and stability are still not high enough for applications. In order to improve the surface catalysis of LSC, we have subjected it to multiple H2O2 treatments. After 4 treatments, lasting 6 hours each, the current density of LSC at 1.70 V (vs RHE) increased by a factor of 6.6 and concomitantly, the Tafel slope decreased from 105.5 to 76.6 mVdec−1 compared to untreated materials. The long-term stability also improved dramatically after treatment. All these improvements are likely linked to the formation of an amorphous layer of hydrous oxide on the LSC particles during treatment.

Research Area(s)

  • catalysts, fuel cells, oxygen evolution reaction, perovskite oxides, surface treatment

Bibliographic Note

Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to lbscholars@cityu.edu.hk.