Guanidinium induced phase separated perovskite layer for efficient and highly stable solar cells

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalNot applicablepeer-review

View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)9486-9496
Journal / PublicationJournal of Materials Chemistry A
Volume7
Issue number16
Early online date20 Mar 2019
Publication statusPublished - 28 Apr 2019

Abstract

Guanidinium (GA) has been proposed as an effective organic cation in improving the stability of lead halide perovskite solar cells (PSCs). However, the reported efficiency of GA based PSCs is far behind traditional GA-free devices. Herein, a novel GA doped quadruple cation perovskite, Cs0.05 (FA0.83(MA1−x GAx)0.17)0.95Pb(I0.83Br0.17)3 (CsFAMA1−xGAx), is presented. It is found that the introduction of GA induces a phase separation of 3D CsFAMA1−xGAx ,2D FAGAPbI4 , and 1D δ-FAPbI3 . By tuning the content of GA, a δ-FAPbI3 /CsFAMA1−xGAx (1D/3D) perovskite with superior optoelectronic properties is demonstrated. The novel 1D/3D perovskite shows an overall improvement in stability. The corresponding solar cell exhibits a PCE of 20.29% with negligible hysteresis, being the highest reported efficiency for GA based PSCs thus far. This study introduces a new perovskite model toward efficient and highly stable PSCs.