Groove optimization for drag reduction

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

30 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number113601
Journal / PublicationPhysics of Fluids
Volume25
Issue number11
Online published1 Nov 2013
Publication statusPublished - Nov 2013
Externally publishedYes

Abstract

Optimal shapes of laminar, drag reducing longitudinal grooves in a pressure driven flow have been determined. It has been shown that such shapes can be characterized using reduced geometry models involving only a few Fourier modes. Two classes of grooves have been studied, i.e., the equal-depth grooves, which have the same height and depth, and the unequal-depth grooves. It has been shown that the optimal shape in the former case can be approximated by a certain universal trapezoid. There exists an optimum depth in the latter case and this depth, combined with the corresponding groove shape, defines the optimal geometry; this shape is well-approximated by a Gaussian function. Drag reduction due to the use of the optimal grooves has been determined. The analysis has been extended to kinematically driven flows. It has been shown that in this case the longitudinal grooves always increase the flow resistance.

Citation Format(s)

Groove optimization for drag reduction. / Mohammadi, A.; Floryan, J. M.

In: Physics of Fluids, Vol. 25, No. 11, 113601, 11.2013.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal