TY - JOUR
T1 - Grating-coupled Otto configuration for hybridized surface phonon polariton excitation for local refractive index sensitivity enhancement
AU - Pechprasarn, Suejit
AU - Learkthanakhachon, Supannee
AU - Zheng, Gaige
AU - Shen, Hong
AU - Lei, Dang Yuan
AU - Somekh, Michael G.
PY - 2016/8/22
Y1 - 2016/8/22
N2 - We demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface. The hybridized surface phonon polariton modes also provide a stronger field enhancement compared to conventional pure mode excitation.
AB - We demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface. The hybridized surface phonon polariton modes also provide a stronger field enhancement compared to conventional pure mode excitation.
UR - http://www.scopus.com/inward/record.url?scp=84991080534&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-84991080534&origin=recordpage
U2 - 10.1364/OE.24.019517
DO - 10.1364/OE.24.019517
M3 - RGC 21 - Publication in refereed journal
SN - 1094-4087
VL - 24
SP - 19517
EP - 19530
JO - Optics Express
JF - Optics Express
IS - 17
ER -