TY - JOUR
T1 - Gonadotropin-induced apoptosis in human ovarian surface epithelial cells is associated with cyclooxygenase-2 up-regulation via the β-catenin/T-cell factor signaling pathway
AU - Yuen, Lam Pon
AU - Wong, Alice S. T.
N1 - Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].
PY - 2006/12
Y1 - 2006/12
N2 - Gonadotropins play a prominent role in ovarian function and pathology. We have shown that treatment with gonadotropins (FSH and LH/human chorionic gonadotropin) reduces the amount of N-cadherin with a concomitant induction of apoptosis in human ovarian surface epithelial (OSE) cells, but precise molecular mechanisms remain to be elucidated. Here, we demonstrated activation of β-catenin/T-cell factor (TCF) signaling by gonadotropins. We further showed that ectopic expression of N-cadherin was sufficient to recruit β-catenin to the plasma membrane, thereby blocking β-catenin/TCF-mediated transactivation in gonadotropin-treated cells. Transfection with β-catenin small interfering RNA or expression of dominant negative TCF inhibited apoptosis, whereas expression of dominant stable β-catenin (S37A) caused significant apoptosis, thus supporting a proapoptotic role for β-catenin/TCF in human OSE. In addition, we showed that gonadotropins enhanced β-catenin/TCF transcriptional activity through inactivation of glycogen synthase kinase-3β in a phosphatidylinositol 3-kinase/Akt- dependent manner, indicating cross talk between the phosphatidylinositol 3-kinase/Akt and β-catenin signaling pathways through glycogen synthase kinase-3β. Furthermore, gonadotropins increased cyclooxygenase-2 (COX-2) expression via the β-catenin/TCF pathway. COX-2 also played a role in gonadotropin-induced apoptosis, as treatment with the COX-2-specific inhibitor NS-398 or COX-2 small interfering RNA blocked gonadotropin-dependent apoptotic activity. These findings suggest that the participation of β-catenin in adhesion and signaling may represent a novel mechanism through which gonadotropins may regulate the cellular fate of human OSE. Copyright © 2006 by The Endocrine Society.
AB - Gonadotropins play a prominent role in ovarian function and pathology. We have shown that treatment with gonadotropins (FSH and LH/human chorionic gonadotropin) reduces the amount of N-cadherin with a concomitant induction of apoptosis in human ovarian surface epithelial (OSE) cells, but precise molecular mechanisms remain to be elucidated. Here, we demonstrated activation of β-catenin/T-cell factor (TCF) signaling by gonadotropins. We further showed that ectopic expression of N-cadherin was sufficient to recruit β-catenin to the plasma membrane, thereby blocking β-catenin/TCF-mediated transactivation in gonadotropin-treated cells. Transfection with β-catenin small interfering RNA or expression of dominant negative TCF inhibited apoptosis, whereas expression of dominant stable β-catenin (S37A) caused significant apoptosis, thus supporting a proapoptotic role for β-catenin/TCF in human OSE. In addition, we showed that gonadotropins enhanced β-catenin/TCF transcriptional activity through inactivation of glycogen synthase kinase-3β in a phosphatidylinositol 3-kinase/Akt- dependent manner, indicating cross talk between the phosphatidylinositol 3-kinase/Akt and β-catenin signaling pathways through glycogen synthase kinase-3β. Furthermore, gonadotropins increased cyclooxygenase-2 (COX-2) expression via the β-catenin/TCF pathway. COX-2 also played a role in gonadotropin-induced apoptosis, as treatment with the COX-2-specific inhibitor NS-398 or COX-2 small interfering RNA blocked gonadotropin-dependent apoptotic activity. These findings suggest that the participation of β-catenin in adhesion and signaling may represent a novel mechanism through which gonadotropins may regulate the cellular fate of human OSE. Copyright © 2006 by The Endocrine Society.
UR - http://www.scopus.com/inward/record.url?scp=33751513321&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-33751513321&origin=recordpage
U2 - 10.1210/me.2006-0125
DO - 10.1210/me.2006-0125
M3 - RGC 21 - Publication in refereed journal
C2 - 16945989
SN - 0888-8809
VL - 20
SP - 3336
EP - 3350
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 12
ER -