Golden Grain : Building a Secure and Decentralized Model Marketplace for MLaaS

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

1 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Number of pages18
Journal / PublicationIEEE Transactions on Dependable and Secure Computing
Publication statusOnline published - 2 Jun 2021

Abstract

ML-as-a-service (MLaaS) becomes increasingly popular and revolutionizes the lives of people. A natural requirement for MLaaS is, however, to provide highly accurate prediction services. To achieve this, current MLaaS systems integrate and combine multiple well-trained models in their services. Yet, in reality, there is no easy way for MLaaS providers, especially for startups, to collect sufficiently well-trained models from individual developers, due to the lack of incentives. In this paper, we aim to fill this gap by building up a model marketplace, called Golden Grain, to facilitate model sharing, which enforces the fair model-money swapping process between individual developers and MLaaS providers. Specifically, we deploy the swapping process on the blockchain, and further introduce a blockchain-empowered model benchmarking process for transparently determining the model prices according to their authentic performances, so as to motivate the faithful contributions of well-trained models. Especially, to ease the blockchain overhead for model benchmarking, our marketplace carefully offloads the heavy computation and designs a secure off-chain on-chain interaction protocol based on a trusted execution environment (TEE), for ensuring both the integrity and authenticity of benchmarking. We implement a prototype of our Golden Grain on the Ethereum blockchain, and conduct extensive experiments using standard benchmark datasets to demonstrate the practically affordable performance of our design.

Research Area(s)

  • Benchmark testing, Blockchain, Computational modeling, Data models, Marketplace, ML-as-a-service, Predictive models, Smart contracts, Trusted execution environment, Urban areas