Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 867-871 |
Journal / Publication | Comptes Rendus Mathematique |
Volume | 348 |
Issue number | 15-16 |
Online published | 31 Jul 2010 |
Publication status | Published - Aug 2010 |
Link(s)
Abstract
We present the first global well-posedness result for the Boltzmann equation without angular cutoff in the framework of weighted Sobolev spaces, in a close to equilibrium framework, and for Maxwellian molecules. These solutions become smooth for any positive time. An important ingredient of the proof rests on the introduction of a new norm, encoding both the singularity and the dissipation properties of the linearized collision operator. © 2010.
Citation Format(s)
Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff. / Alexandre, Radjesvarane; Morimoto, Y.; Ukai, S. et al.
In: Comptes Rendus Mathematique, Vol. 348, No. 15-16, 08.2010, p. 867-871.
In: Comptes Rendus Mathematique, Vol. 348, No. 15-16, 08.2010, p. 867-871.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review