Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

7 Scopus Citations
View graph of relations

Author(s)

  • Radjesvarane Alexandre
  • Y. Morimoto
  • S. Ukai
  • Chao-Jiang Xu
  • T. Yang

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)867-871
Journal / PublicationComptes Rendus Mathematique
Volume348
Issue number15-16
Online published31 Jul 2010
Publication statusPublished - Aug 2010

Abstract

We present the first global well-posedness result for the Boltzmann equation without angular cutoff in the framework of weighted Sobolev spaces, in a close to equilibrium framework, and for Maxwellian molecules. These solutions become smooth for any positive time. An important ingredient of the proof rests on the introduction of a new norm, encoding both the singularity and the dissipation properties of the linearized collision operator. © 2010.

Citation Format(s)

Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff. / Alexandre, Radjesvarane; Morimoto, Y.; Ukai, S. et al.
In: Comptes Rendus Mathematique, Vol. 348, No. 15-16, 08.2010, p. 867-871.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review