Global structure stability for the wave catching-up phenomenon in a prestressed two-material bar

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)585-604
Journal / PublicationSIAM Journal on Applied Mathematics
Volume75
Issue number2
Online published26 Mar 2015
Publication statusPublished - 2015

Abstract

Shock waves in a structure can result in the detachment of an interface and induce microcracks. In a recent study [Huang et al., R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 3882-3901], it was shown that for certain nonlinearly elastic materials it is possible to generate a phenomenon in which a tensile wave can catch the first transmitted compressive wave (so the former can be undermined) in an initially stress-free two-material bar. In this study, we consider the wave catching-up phenomenon in a nonlinearly elastic prestressed two-material bar. We use the same method as that used by Huang et al. in the previously mentioned paper to construct solutions. Our main focus is on proving the global structure stability of the solutions in a prestressed (or initially stress-free) two-material bar. We first reduce the corresponding initial boundary value problem into several typical free boundary problems based on the formulation of Riemann invariants. Then, using a constructive method and carefully treating the complexity arising from multiple reflections of waves at the interface in the two-material bar, we successfully prove the global structure stability of the wave catching-up phenomenon.

Research Area(s)

  • Global structure stability, Impact, Prestress, Two-material bar, Wave catching-up phenomenon