GKAR : A novel geographic (K)-anycast routing for wireless sensor networks

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journal

16 Scopus Citations
View graph of relations

Author(s)

Related Research Unit(s)

Detail(s)

Original languageEnglish
Article number6200262
Pages (from-to)916-925
Journal / PublicationIEEE Transactions on Parallel and Distributed Systems
Volume24
Issue number5
Online published14 May 2012
Publication statusPublished - May 2013

Abstract

To efficiently archive and query data in wireless sensor networks (WSNs), distributed storage systems, and multisink schemes have been proposed recently. However, such distributed access cannot be fully supported and exploited by existing routing protocols in a large-scale WSN. In this paper, we will address this challenging issue and propose a distributed geographic (K)-anycast routing (GKAR) protocol for WSNs, which can efficiently route data from a source sensor to any (K) destinations (e.g., storage nodes or sinks). To guarantee (K)-delivery, an iterative approach is adopted in GKAR where in each round, GKAR will determine not only the next hops at each node, but also a set of potential destinations for every next hop node to reach. Efficient algorithms are designed to determine the selection of the next hops and destination set division at each intermediate node. We analyze the complexity of GKAR in each round and we also theoretically analyze the expected number of rounds required to guarantee (K)-delivery. Simulation results demonstrate the superiority of the GKAP scheme in reducing the total duration and the communication overhead for finding (K) destinations, by comparing with the existing schemes, e.g., (K 1)-anycast [10]. © 1990-2012 IEEE.

Research Area(s)

  • (K)-anycast, geographic routing, Wireless sensor networks