TY - JOUR
T1 - Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells
AU - Kar, Wah Leung
AU - Yuen, Lam Pon
AU - Wong, Ricky N. S.
AU - Wong, Alice S. T.
N1 - Publication details (e.g. title, author(s), publication statuses and dates) are captured on an “AS IS” and “AS AVAILABLE” basis at the time of record harvesting from the data source. Suggestions for further amendments or supplementary information can be sent to [email protected].
PY - 2006/11/24
Y1 - 2006/11/24
N2 - Ginsenoside-Rg1, the most prevalent active constituent of ginseng, is a potent proangiogenic factor of vascular endothelial cells. This suggests that Rg1 may be a new modality for angiotherapy. Rg1 can activate the glucocorticoid receptor (GR). However, the regulatory steps downstream from GR that promote Rg1-induced angiogenesis have not been elucidated. Here we showed for the first time that Rg1 was a potent stimulator of vascular endothelial growth factor (VEGF) expression in human umbilical vein endothelial cells, and importantly this induction was mediated through a phosphatidylinositol 3-kinase (PI3K)/ Akt and β-catenin/T-cell factor-dependent pathway via the GR. Rg1 stimulation resulted in an increase in the level of β-catenin, culminating its nuclear accumulation, and subsequent activation of VEGF expression. Transfection of a stable form of β-catenin (S37A) or the use of a glycogen synthase kinase 3β inhibitor to stabilize β-catenin induced VEGF synthesis, whereas small interfering RNA-mediated down-regulation of β-catenin did not, confirming that the effect was β-catenin-specific. Using a luciferase reporter gene assay, we observed that Rg1 increased T-cell factor/lymphoid enhancer factor transcriptional activity. These events were mediated via a PI3K-dependent phosphorylation of the inhibitory Ser9 residue of glycogen synthase kinase 3β. In addition, the GR antagonist RU486 was able to inhibit Rg1-induced PI3K/Akt and β-catenin activation. These findings provide new insights into the mechanism responsible for Rg1 functions. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
AB - Ginsenoside-Rg1, the most prevalent active constituent of ginseng, is a potent proangiogenic factor of vascular endothelial cells. This suggests that Rg1 may be a new modality for angiotherapy. Rg1 can activate the glucocorticoid receptor (GR). However, the regulatory steps downstream from GR that promote Rg1-induced angiogenesis have not been elucidated. Here we showed for the first time that Rg1 was a potent stimulator of vascular endothelial growth factor (VEGF) expression in human umbilical vein endothelial cells, and importantly this induction was mediated through a phosphatidylinositol 3-kinase (PI3K)/ Akt and β-catenin/T-cell factor-dependent pathway via the GR. Rg1 stimulation resulted in an increase in the level of β-catenin, culminating its nuclear accumulation, and subsequent activation of VEGF expression. Transfection of a stable form of β-catenin (S37A) or the use of a glycogen synthase kinase 3β inhibitor to stabilize β-catenin induced VEGF synthesis, whereas small interfering RNA-mediated down-regulation of β-catenin did not, confirming that the effect was β-catenin-specific. Using a luciferase reporter gene assay, we observed that Rg1 increased T-cell factor/lymphoid enhancer factor transcriptional activity. These events were mediated via a PI3K-dependent phosphorylation of the inhibitory Ser9 residue of glycogen synthase kinase 3β. In addition, the GR antagonist RU486 was able to inhibit Rg1-induced PI3K/Akt and β-catenin activation. These findings provide new insights into the mechanism responsible for Rg1 functions. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
UR - http://www.scopus.com/inward/record.url?scp=33846013596&partnerID=8YFLogxK
UR - https://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-33846013596&origin=recordpage
U2 - 10.1074/jbc.M606698200
DO - 10.1074/jbc.M606698200
M3 - RGC 21 - Publication in refereed journal
C2 - 17008323
SN - 0021-9258
VL - 281
SP - 36280
EP - 36288
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 47
ER -