TY - JOUR
T1 - Gettering La Effect from La3IrO7 as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction in Acid Media
AU - Qin, Qing
AU - Jang, Haeseong
AU - Wang, Yimeng
AU - Zhang, Lijie
AU - Li, Zijian
AU - Kim, Min Gyu
AU - Liu, Shangguo
AU - Liu, Xien
AU - Cho, Jaephil
PY - 2021/2/4
Y1 - 2021/2/4
N2 - Developing highly active, durable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is of prime importance in proton exchange membrane (PEM) water electrolysis techniques. Herein, a surface lanthanum-deficient (SLD) iridium oxide as a highly efficient OER electrocatalyst is reported (labeled as La3IrO7-SLD), which is obtained by electrochemical activation, and shows better activity and durability than that of commerically available IrO2 as well as most of the reported Ir-based OER electrocatalysts. At a current density of 10 mA cm−2, the overpotential of La3IrO7-SLD is 296 mV, which is lower than that of IrO2 (316 mV). Impressively, the increase of potential is less than 50 mV at a voltage–time chronopotentiometry extending for 60 000 s using a glass carbon electrode that is vastly superior to IrO2. Moreover, the mass activity of the catalyst is approximately five times higher than that of IrO2 at 1.60 V versus reversible hydrogen electrode. Density functional theory calculations suggest that a lattice oxygen participating mechanism with central Ir atoms serving as active sites (LOM-Ir) rationalizes the high activity and durability for the La3IrO7-SLD electrocatalyst. The favorable energy level of surface active Ir 5d orbitals relative to coordinated O 2p orbitals makes the La3IrO7-SLD more active.
AB - Developing highly active, durable, and cost-effective electrocatalysts for the oxygen evolution reaction (OER) is of prime importance in proton exchange membrane (PEM) water electrolysis techniques. Herein, a surface lanthanum-deficient (SLD) iridium oxide as a highly efficient OER electrocatalyst is reported (labeled as La3IrO7-SLD), which is obtained by electrochemical activation, and shows better activity and durability than that of commerically available IrO2 as well as most of the reported Ir-based OER electrocatalysts. At a current density of 10 mA cm−2, the overpotential of La3IrO7-SLD is 296 mV, which is lower than that of IrO2 (316 mV). Impressively, the increase of potential is less than 50 mV at a voltage–time chronopotentiometry extending for 60 000 s using a glass carbon electrode that is vastly superior to IrO2. Moreover, the mass activity of the catalyst is approximately five times higher than that of IrO2 at 1.60 V versus reversible hydrogen electrode. Density functional theory calculations suggest that a lattice oxygen participating mechanism with central Ir atoms serving as active sites (LOM-Ir) rationalizes the high activity and durability for the La3IrO7-SLD electrocatalyst. The favorable energy level of surface active Ir 5d orbitals relative to coordinated O 2p orbitals makes the La3IrO7-SLD more active.
U2 - 10.1002/aenm.202003561
DO - 10.1002/aenm.202003561
M3 - RGC 21 - Publication in refereed journal
SN - 1614-6832
VL - 11
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 5
M1 - 2003561
ER -