Generalized Correlation-Delay-Shift-Keying Scheme for Noncoherent Chaos-Based Communication Systems

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

75 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Pages (from-to)712-721
Journal / PublicationIEEE Transactions on Circuits and Systems I: Regular Papers
Volume53
Issue number3
Publication statusPublished - Mar 2006
Externally publishedYes

Abstract

In this paper, we propose a generalized correlation-delay-shift-keying (GCDSK) scheme for noncoherent chaos-based communications. In the proposed scheme, several delayed versions of a chaotic signal are first produced. Some of them will be modulated by the binary data to be transmitted. The delayed signals will then be added to the original chaotic signal and transmitted. At the receiver, a simple correlator-type detector is employed to decode the binary symbols. The approximate bit error rate (BER) of the GCDSK scheme is derived analytically based on Gaussian approximation. Simulations are performed and compared with the noncoherent correlation-delay-shift-keying (CDSK) and differential chaos-shift-keying (DCSK) modulation schemes. The effects of the spreading factor, length of delay, and the number of delay units on the BER are fully studied. It is found that GCDSK can achieve better BER performance than DCSK under reasonable bit-energy-to-noise-power-spectral-density ratios. © 2006 IEEE.

Research Area(s)

  • Chaos communications, Correlation-delay-shift-keying, Noncoherent communication