GAME: Learning Graphical and Attentive Multi-view Embeddings for Occasional Group Recommendation

Zhixiang He, Chi-Yin Chow*, Jia-Dong Zhang*

*Corresponding author for this work

Research output: Chapters, Conference Papers, Creative and Literary WorksRGC 32 - Refereed conference paper (with host publication)peer-review

63 Citations (Scopus)

Abstract

Group recommendation aims to suggest preferred items to a group of users rather than to an individual user. Most existing methods on group recommendation directly learn the inherent interests of groups and users or inherent features of items, i.e., independently modeling the inherent embeddings of groups, users or items. However, the independent view severely suffers from the cold-start problem when making recommendations for occasional groups that are temporally formed by a set of users and have few interactions on items. Actually, the groups, users and items are interdependent because they interact with one another. The interdependencies constitute an interaction graph that provides multiple views to model the embeddings of groups, users and items from their interacting counterparts to improve recommendation for occasional groups. To this end, we propose a model, named GAME to learn the Graphical and Attentive Multi-view Embeddings (i.e., representations) for the groups, users and items from the independent view and counterpart views based on the interaction graph. In the counterpart views, the embedding of a group, user or item is aggregated from the interacting counterparts based on an attention mechanism that derives the adaptive weight for each counterpart. For instance, a user's embedding may be aggregated from her interacting items or groups. Further, GAME applies neural collaborative filtering to investigate the interactions between the multi-view embeddings of groups (or users) and items for group recommendation. Finally, we conduct extensive experiments on two real datasets. The experimental results show that GAME outperforms other state-of-the-art models, especially on both cold-start groups (i.e., occasional groups) and cold-start items.
Original languageEnglish
Title of host publicationSIGIR '20
Subtitle of host publicationProceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages649-658
ISBN (Print)9781450380164
DOIs
Publication statusPublished - Jul 2020
Event43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20) - Virtual, Xi'an, China
Duration: 25 Jul 202030 Jul 2020
https://sigir.org/sigir2020/

Publication series

NameSIGIR - Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20)
Abbreviated titleACM SIGIR 2020
Country/TerritoryChina
CityXi'an
Period25/07/2030/07/20
Internet address

Research Keywords

  • Occasional group
  • group recommendation
  • interaction graph
  • multiview embeddings
  • attention mechanism

Fingerprint

Dive into the research topics of 'GAME: Learning Graphical and Attentive Multi-view Embeddings for Occasional Group Recommendation'. Together they form a unique fingerprint.

Cite this