Forecasting one-day-forward wellness conditions for community-dwelling elderly with single lead short electrocardiogram signals

Xiaomao Fan, Yang Zhao*, Hailiang Wang, Kwok Leung Tsui

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

13 Citations (Scopus)
27 Downloads (CityUHK Scholars)

Abstract

Background: The accelerated growth of elderly population is creating a heavy burden to the healthcare system in many developed countries and regions. Electrocardiogram (ECG) analysis has been recognized as effective approach to cardiovascular disease diagnosis and widely utilized for monitoring personalized health conditions. 
Method: In this study, we present a novel approach to forecasting one-day-forward wellness conditions for community-dwelling elderly by analyzing single lead short ECG signals acquired from a station-based monitoring device. More specifically, exponentially weighted moving-average (EWMA) method is employed to eliminate the high-frequency noise from original signals at first. Then, Fisher-Yates normalization approach is used to adjust the self-evaluated wellness score distribution since the scores among different individuals are skewed. Finally, both deep learning-based and traditional machine learning-based methods are utilized for building wellness forecasting models. 
Results: The experiment results show that the deep learning-based methods achieve the best fitted forecasting performance, where the forecasting accuracy and F value are 93.21% and 91.98% respectively. The deep learning-based methods, with the merit of non-hand-crafted engineering, have superior wellness forecasting performance towards the competitive traditional machine learning-based methods. 
Conclusion: The developed approach in this paper is effective in wellness forecasting for community-dwelling elderly, which can provide insights in terms of implementing a cost-effective approach to informing healthcare provider about health conditions of elderly in advance and taking timely interventions to reduce the risk of malignant events.
Original languageEnglish
Article number285
JournalBMC Medical Informatics and Decision Making
Volume19
Online published30 Dec 2019
DOIs
Publication statusPublished - 2019

Research Keywords

  • Data mining
  • Deep learning
  • Elderly care
  • Wellness forecasting

Publisher's Copyright Statement

  • This full text is made available under CC-BY 4.0. https://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Forecasting one-day-forward wellness conditions for community-dwelling elderly with single lead short electrocardiogram signals'. Together they form a unique fingerprint.

Cite this