Forecasting COVID-19 pandemic : Unknown unknowns and predictive monitoring

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

36 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number120602
Journal / PublicationTechnological Forecasting and Social Change
Volume166
Online published19 Jan 2021
Publication statusPublished - May 2021
Externally publishedYes

Abstract

During the current COVID-19 pandemic, there have been many efforts to forecast infection cases, deaths, and courses of development, using a variety of mechanistic, statistical, or time-series models. Some forecasts have influenced policies in some countries. However, forecasting future developments in the pandemic is fundamentally challenged by the innate uncertainty rooted in many “unknown unknowns,” not just about the contagious virus itself but also about the intertwined human, social, and political factors, which co-evolve and keep the future of the pandemic open-ended. These unknown unknowns make the accuracy-oriented forecasting misleading. To address the extreme uncertainty of the pandemic, a heuristic approach and exploratory mindset is needed. Herein, grounded on our own COVID-19 forecasting experiences, I propose and advocate the “predictive monitoring” paradigm, which synthesizes prediction and monitoring, to make government policies, organization planning, and individual mentality heuristically future-informed despite the extreme uncertainty. © 2021 Elsevier Inc. All rights reserved.

Research Area(s)

  • COVID-19 pandemic, Forecasting, Monitoring, Prediction, Uncertainty