Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1287–1297 |
Journal / Publication | ACS Nano |
Volume | 17 |
Issue number | 2 |
Online published | 11 Jan 2023 |
Publication status | Published - 24 Jan 2023 |
Link(s)
DOI | DOI |
---|---|
Attachment(s) | Documents
Publisher's Copyright Statement
|
Link to Scopus | https://www.scopus.com/record/display.uri?eid=2-s2.0-85146330003&origin=recordpage |
Permanent Link | https://scholars.cityu.edu.hk/en/publications/publication(04982eb4-f963-4628-a1d3-fdeffb092c4f).html |
Abstract
Composition modulation and edge enrichment are established protocols to steer the electronic structures and catalytic activities of two-dimensional (2D) materials. It is believed that a heteroatom enhances the catalytic performance by activating the chemically inert basal plane of 2D crystals. However, the edge and basal plane have inherently different electronic states, and how the dopants affect the edge activity remains ambiguous. Here we provide mechanistic insights into this issue by monitoring the hydrogen evolution reaction (HER) performance of phosphorus-doped MoS2 (P-MoS2) nanosheets via on-chip electrocatalytic microdevices. Upon phosphorus doping, MoS2 nanosheet gets catalytically activated and, more importantly, shows higher HER activity in the edge than the basal plane. In situ transport measurement demonstrates that the improved HER performance of P-MoS2 is derived from intrinsic catalytic activity rather than charge transfer. Density functional theory calculations manifest that the edge sites of P-MoS2 are energetically more favorable for HER. The finding guides the rational design of edge-dominant P-MoS2, reaching a minuscule onset potential of ∼30 mV and Tafel slope of 48 mV/dec that are benchmarked against other activation methods. Our results disclose the hitherto overlooked edge activity of 2D materials induced by heteroatom doping that will provide perspectives for preparing next-generation 2D catalysts.
Research Area(s)
- Active edge sites, basal plane, heteroatom doping, hydrogen evolution reaction, on-chip electrochemistry
Citation Format(s)
Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution. / Wang, Wenbin; Song, Yun; Ke, Chengxuan et al.
In: ACS Nano, Vol. 17, No. 2, 24.01.2023, p. 1287–1297.
In: ACS Nano, Vol. 17, No. 2, 24.01.2023, p. 1287–1297.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Download Statistics
No data available