Field-induced slow magnetic relaxation in low-spin S = 1/2 mononuclear osmium(v) complexes

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Author(s)

  • Qian-Qian Su
  • Kun Fan
  • Xin-Da Huang
  • Jing Xiang
  • Shun-Cheung Cheng
  • Li-Min Zheng
  • Mohamedally Kurmoo

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)4084-4092
Journal / PublicationDalton Transactions
Volume49
Issue number13
Online published19 Feb 2020
Publication statusPublished - 7 Apr 2020

Abstract

Photochemical reactions of (PPh4)[OsVI(N)(L)(CN)3] (NO2-OsN) with piperidine and pyrrolidine afforded two osmium(v) hydrazido compounds, (PPh4)[OsV(L)(CN)3(NNC5H10)] ([PPh4]1) and (PPh4)[OsV(L)(CN)3(NNC4H8)] ([PPh4]2), respectively. Their structures consist of isolated, mononuclear distorted octahedral osmium anions that are well-separated from each other by PPh4+. Their low spin S = 1/2 and L = 1 ground state was confirmed by magnetometry and DFT calculations. Interestingly, both compounds exhibit slow magnetic relaxation under a bias dc-field. These osmium(v) complexes are potentially useful building-blocks for the construction of molecule-based architectures with interesting magnetic properties. In contrast, the structurally related (PPh4)[OsIII(L)(CN)3(NH3)] ([PPh4]3), which also has a low-spin S = 1/2 ground state but with a different electronic configuration (5d5), does not exhibit slow magnetic relaxation, due to the absence of any orbital moment (L = 0). Furthermore, the structurally different osmium(v) hydrazido compound reported by Meyer, [OsV(tpy)(Cl)2(NNC5H10)](PF6) (4[PF6]), also does not exhibit slow magnetic relaxation due possibly to a change in magnetic anisotropy from axial for [PPh4]1 and [PPh4]2 to planar.

Citation Format(s)

Field-induced slow magnetic relaxation in low-spin S = 1/2 mononuclear osmium(v) complexes. / Su, Qian-Qian; Fan, Kun; Huang, Xin-Da; Xiang, Jing; Cheng, Shun-Cheung; Ko, Chi-Chiu; Zheng, Li-Min; Kurmoo, Mohamedally; Lau, Tai-Chu.

In: Dalton Transactions, Vol. 49, No. 13, 07.04.2020, p. 4084-4092.

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review