Feasibility of a new helical blade structure for a PV integrated wind turbine in a heat-driven swirling wind field

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

10 Scopus Citations
View graph of relations

Author(s)

  • Mingxu Zhang
  • Weijun Li
  • Junwei Su
  • Kiwamu Kase
  • Chuck Wah Yu
  • Zhaolin Gu

Detail(s)

Original languageEnglish
Pages (from-to)585-598
Journal / PublicationEnergy
Volume185
Online published6 Jul 2019
Publication statusPublished - 15 Oct 2019

Abstract

A controllable heat-driven swirling wind turbine system was integrated with a photovoltaics (PV) system for energy generation in a heat-collecting shed. This is a brand-new type of a wind energy generation system; and a helical three-blade structure in a vertical axis was introduced. The stationary pre-rotation vanes have a variable diameter and a helical twist angle of 225°. A numerical simulation was conducted to investigate the feasibility of a wind turbine blade structure for efficient energy output for industrial application. The computational fluid dynamics (CFD) tool OpenFOAM was used to simulate the operating conditions of the wind turbine. The findings illustrated the efficacy of the new system. The new helical blade structure is efficient for wind energy output of the turbine in a swirling wind field. The simulation under different heat source temperatures illustrated that an increase in heat source temperature could increase the output efficiency of the wind turbine energy system. The increment in output efficiency could be up to 19.07% when the temperature rises from 40 K to 80 K. The PV-swirling wind integrated system was shown to be more economical than a single solar photovoltaic system because its investment payoff period could be shortened by 2 years.

Research Area(s)

  • Feasibility analyses, Heat-driven, Helical blades, PV-Integrated wind turbine, Swirling wind field

Citation Format(s)

Feasibility of a new helical blade structure for a PV integrated wind turbine in a heat-driven swirling wind field. / He, Yuanping; Zhang, Mingxu; Li, Weijun et al.
In: Energy, Vol. 185, 15.10.2019, p. 585-598.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review