FDA radar with doppler-spreading consideration : Mainlobe clutter suppression for blind-doppler target detection

Research output: Journal Publications and Reviews (RGC: 21, 22, 62)21_Publication in refereed journalpeer-review

3 Scopus Citations
View graph of relations

Author(s)

Detail(s)

Original languageEnglish
Article number107773
Journal / PublicationSignal Processing
Volume179
Online published18 Sep 2020
Publication statusPublished - Feb 2021
Externally publishedYes

Abstract

This paper proposes a mainlobe clutter suppression approach for frequency diverse array (FDA) radar blind-Doppler target detection, by exploiting the Doppler-spreading (DS) effect. As an emerging array processing technique, FDA differs from conventional phased-array in that it employs a frequency increment across the array elements. When a large frequency increment is used, the FDA radar echo signal from a moving target will be spectrally spread in Doppler domain. Inspired by this phenomenon, we establish a joint range-angle-Doppler processing model for FDA radar with DS consideration. Using resolution capability analysis, we show that that this DS effect provides potentials in resolving Doppler ambiguity and meanwhile suppressing mainlobe clutters. As an application example, the proposed FDA radar model with DS consideration is used for blind-Doppler target detection in mainlobe clutters. Analytical expressions for the detection probability and signal-to-clutter-plus-noise ratio (SCNR) are derived for the proposed FDA-based target detection. Numerical results show that the proposed approach outperforms the counterparts for the FDA radar without DS consideration and conventional radars.

Research Area(s)

  • Clutter suppression, Doppler spreading, Frequency diverse array (FDA) radar, Mainlobe clutter, Target detection