Fast prediction of protein-protein interaction sites based on Extreme Learning Machines

Debby D. Wang, Ran Wang, Hong Yan

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

70 Citations (Scopus)

Abstract

Conventional machine learning methods can be used to identify protein-protein interaction sites and study the gene regulatory networks and functions. However, when applied to large datasets, the computational complexities of these methods become a major drawback. With a significantly reduced computational complexity, the Extreme Learning Machines provide an attractive balance between computational time and generalization performance. In the method proposed in this paper, after searching for interfacial residues using a dynamic strategy and extracting spatially neighboring residue profiles for a set of 563 non-redundant protein chains, we implement the interface prediction either on multi-chain sets or on single-chain sets, using the two methods Extreme Learning Machines and support vector machines for a comparable study. As a consequence, in both multi-chain and single-chain cases Extreme Learning Machines tend to obtain higher Recall values than support vector machines, and in the multi-chain case Extreme Learning Machines as well show a remarkable advantage in the computational speed. © 2013 Elsevier B.V.
Original languageEnglish
Pages (from-to)258-266
JournalNeurocomputing
Volume128
Online published25 Oct 2013
DOIs
Publication statusPublished - 27 Mar 2014

Research Keywords

  • Extreme Learning Machines
  • Protein-protein interaction sites
  • Residue sequence profile
  • Support vector machines

Fingerprint

Dive into the research topics of 'Fast prediction of protein-protein interaction sites based on Extreme Learning Machines'. Together they form a unique fingerprint.

Cite this