Fast, Nonlocal and Neural: A Lightweight High Quality Solution to Image Denoising

Yu Guo, Axel Davy, Gabriele Facciolo, Jean-Michel Morel, Qiyu Jin*

*Corresponding author for this work

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

20 Citations (Scopus)

Abstract

With the widespread application of convolutional neural networks (CNNs), the traditional model based denoising algorithms are now outperformed. However, CNNs face two problems. First, they are computationally demanding, which makes their deployment especially difficult for mobile terminals. Second, experimental evidence shows that CNNs often over-smooth regular textures present in images, in contrast to traditional non-local models. In this letter, we propose a solution to both issues by combining a nonlocal algorithm with a lightweight residual CNN. s solution gives full latitude to the advantages of both models. We apply this framework to two GPU implementations of classic nonlocal algorithms (NLM and BM3D) and observe a substantial gain in both cases, performing better than the state-of-the-art with low computational requirements. Our solution is between 10 and 20 times faster than CNNs with equivalent performance and attains higher PSNR. In addition the final method shows a notable gain on images containing complex textures like the ones of the MIT Moiré dataset. © 2021 IEEE.
Original languageEnglish
Pages (from-to)1515-1519
JournalIEEE Signal Processing Letters
Volume28
Online published26 Jul 2021
DOIs
Publication statusPublished - 2021
Externally publishedYes

Research Keywords

  • BM3D
  • convolutional neural network
  • image denoising
  • nonlocal methods

Fingerprint

Dive into the research topics of 'Fast, Nonlocal and Neural: A Lightweight High Quality Solution to Image Denoising'. Together they form a unique fingerprint.

Cite this