Fabrication of 2D−2D Heterojunction Catalyst with Covalent Organic Framework (COF) and MoS2 for Highly Efficient Photocatalytic Degradation of Organic Pollutants

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

106 Scopus Citations
View graph of relations

Author(s)

  • Kyu Kyu Khaing
  • Dongguang Yin
  • Yinggen Ouyang
  • Songtao Xiao
  • Bingqi Liu
  • Linlin Deng
  • Luqiu Li
  • Xiandi Guo
  • Jun Wang
  • Jinliang Liu

Detail(s)

Original languageEnglish
Pages (from-to)6942-6952
Journal / PublicationInorganic Chemistry
Volume59
Issue number10
Online published7 May 2020
Publication statusPublished - 18 May 2020
Externally publishedYes

Abstract

In this work, for the first time, we fabricated a novel covalent organic framework (COF)-based 2D-2D heterojunction composite MoS2/COF by a facile hydrothermal method. The results of photocatalytic degradation of TC and RhB under simulated solar light irradiation showed that the as-prepared composite exhibited outstanding catalytic efficiency compared with pristine COFs and MoS2. The significantly enhanced catalytic efficiency can be ascribed to the formation of 2D-2D heterojunction with a well-matched band position between COF and MoS2, which can effectively restrain the recombination of charge carriers and increase the light absorption as well as the specific surface area. Moreover, the fabricated 2D-2D layered structure can effectively increase the contact area with an intimate interface contact, which greatly facilitates the charge mobility and transfer in the interfaces. This study reveals that artful integration of organic (COFs) and inorganic materials into a single hybrid with a 2D-2D interface is an effective strategy to fabricate highly efficient photocatalysts. © 2020 American Chemical Society.

Citation Format(s)

Fabrication of 2D−2D Heterojunction Catalyst with Covalent Organic Framework (COF) and MoS2 for Highly Efficient Photocatalytic Degradation of Organic Pollutants. / Khaing, Kyu Kyu; Yin, Dongguang; Ouyang, Yinggen et al.
In: Inorganic Chemistry, Vol. 59, No. 10, 18.05.2020, p. 6942-6952.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review