Experiments on the linear instability of flow in a wavy channel

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

39 Scopus Citations
View graph of relations



Original languageEnglish
Pages (from-to)971-986
Journal / PublicationEuropean Journal of Mechanics, B/Fluids
Issue number6
Online published6 May 2006
Publication statusPublished - Nov 2006
Externally publishedYes


The effects of wall corrugation on the stability of wall-bounded shear flows have been examined experimentally in plane channel flows. One of the channel walls has been modified by introduction of the wavy wall model with the amplitude of 4% of the channel half height and the wave number of 1.02. The experiment is focused on the two-dimensional travelling wave instability and the results are compared with the theory [J.M. Floryan, Two-dimensional instability of flow in a rough channel, Phys. Fluids 17 (2005) 044101 (also: Rept. ESFD-1/2003, Dept. of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada, 2003)]. It is shown that the flow is destabilized by the wall corrugation at subcritical Reynolds numbers below 5772, as predicted by the theory. For the present corrugation geometry, the critical Reynolds number is decreased down to about 4000. The spatial growth rates, the disturbance wave numbers and the distribution of disturbance amplitude measured over such wavy wall also agree well with the theoretical results.

Research Area(s)

  • Laminar-turbulent transition, Plane channel flow, Roughness effects