Experimental study of the disinfection performance of a 222-nm Far-UVC upper-room system on airborne microorganisms in a full-scale chamber
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Article number | 110260 |
Journal / Publication | Building and Environment |
Volume | 236 |
Online published | 1 Apr 2023 |
Publication status | Published - 15 May 2023 |
Link(s)
Abstract
222-nm Far-UVC light is an emerging and promising tool for rapidly inactivating airborne pathogens. In this study, we experimentally evaluated the performance of a 222-nm Far-UVC upper-room disinfection system with a 15 W Far-UVC lamp in a full-scale chamber (11.9 m3). One gram-positive bacteria, namely Staphylococcus epidermidis and two gram-negative bacteria, namely Escherichia coli and Salmonella enterica were selected for the experiments. The aerosolized bacteria were injected into the chamber and exposed to 222-nm Far-UVC light. The first-order decay rates of indoor bioaerosols concentration with and without Far-UVC treatment were estimated. According to the results, the 222-nm Far-UVC induced decay rates of three bacteria were 0.0611 ± 0.003, 0.409 ± 0.048, and 0.474 ± 0.015 min−1, respectively. Besides, the UV susceptibility constants (Z-values) of these three bacteria were estimated as 0.157, 0.974, and 1.18 m2/J, respectively. The gram-positive bacteria, S. epidermidis, showed higher resistance to Far-UVC light as compared to the gram-negative bacteria, E. coli and S. enterica. In addition, a case study on airborne SARS-CoV-2 indoor transmission was simulated, and the infection risk of SARS-CoV-2 was compared using the Far-UVC and enhanced ventilation approaches. The results showed that both UV inactivation and ventilation approaches can significantly reduce the infection risk. More importantly, the Far-UVC may be a feasible and sustainable solution for reducing infection risk and improving indoor air quality. © 2023 Elsevier Ltd.
Research Area(s)
- 222-nm Far-UVC, Airborne microorganisms, Infection risk, Upper-room germicidal irradiation, UV susceptibility constants
Citation Format(s)
Experimental study of the disinfection performance of a 222-nm Far-UVC upper-room system on airborne microorganisms in a full-scale chamber. / Wang, M.H.; Zhang, H.H.; Chan, C.K. et al.
In: Building and Environment, Vol. 236, 110260, 15.05.2023.
In: Building and Environment, Vol. 236, 110260, 15.05.2023.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review