Existence of local solutions for the Boltzmann equation without angular cutoff

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review

2 Scopus Citations
View graph of relations

Author(s)

  • Radjesvarane Alexandre
  • Yoshinori Morimoto
  • Seiji Ukai
  • Chao-Jiang Xu
  • Tong Yang

Related Research Unit(s)

Detail(s)

Original languageEnglish
Pages (from-to)1237-1242
Journal / PublicationComptes Rendus Mathematique
Volume347
Issue number21-22
Online published1 Oct 2009
Publication statusPublished - Nov 2009

Abstract

We consider the spatially inhomogeneous Boltzmann equation without angular cutoff. We prove the existence and uniqueness of local classical solutions to the Cauchy problem, in the function space with Maxwellian type exponential decay with respect to the velocity variable. To cite this article: R. Alexandre et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009.

Citation Format(s)

Existence of local solutions for the Boltzmann equation without angular cutoff. / Alexandre, Radjesvarane; Morimoto, Yoshinori; Ukai, Seiji et al.
In: Comptes Rendus Mathematique, Vol. 347, No. 21-22, 11.2009, p. 1237-1242.

Research output: Journal Publications and ReviewsRGC 21 - Publication in refereed journalpeer-review