Existence of local solutions for the Boltzmann equation without angular cutoff
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review
Author(s)
Related Research Unit(s)
Detail(s)
Original language | English |
---|---|
Pages (from-to) | 1237-1242 |
Journal / Publication | Comptes Rendus Mathematique |
Volume | 347 |
Issue number | 21-22 |
Online published | 1 Oct 2009 |
Publication status | Published - Nov 2009 |
Link(s)
Abstract
We consider the spatially inhomogeneous Boltzmann equation without angular cutoff. We prove the existence and uniqueness of local classical solutions to the Cauchy problem, in the function space with Maxwellian type exponential decay with respect to the velocity variable. To cite this article: R. Alexandre et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009.
Citation Format(s)
Existence of local solutions for the Boltzmann equation without angular cutoff. / Alexandre, Radjesvarane; Morimoto, Yoshinori; Ukai, Seiji et al.
In: Comptes Rendus Mathematique, Vol. 347, No. 21-22, 11.2009, p. 1237-1242.
In: Comptes Rendus Mathematique, Vol. 347, No. 21-22, 11.2009, p. 1237-1242.
Research output: Journal Publications and Reviews › RGC 21 - Publication in refereed journal › peer-review